If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+56x+140=0
a = 1; b = 56; c = +140;
Δ = b2-4ac
Δ = 562-4·1·140
Δ = 2576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2576}=\sqrt{16*161}=\sqrt{16}*\sqrt{161}=4\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-4\sqrt{161}}{2*1}=\frac{-56-4\sqrt{161}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+4\sqrt{161}}{2*1}=\frac{-56+4\sqrt{161}}{2} $
| u/10=7/11 | | 45+0.50x=2.00 | | 11=3−0.75x | | 17=-5m | | 15/x=x/60 | | u/10=7/10 | | (2/z+1)+(2/z-1)=5/z+1 | | (N5)-3=3(n+5) | | 16x^2-90=0 | | 2−2s=3/4s+13 | | (x+5)+(3x-5)=100 | | -128=-8(k+8) | | x+3/0.5=1 | | |y|-2=0 | | 18.3-5.18c=6.32c-8.32 | | -4=4x-10 | | 2¾x+24=3x | | 0.25r-(0.125)+0.5r=0.5+r | | 7a+9=7a+9 | | 3-(-x)=15 | | 6g+3(-5+3g)=1-9 | | 3/4=x+2/12 | | 5-2(4+x)=9 | | 1/2m-2.5=5/4+2 | | 5x+8/9x=159 | | 2x-6(6x)-50=0 | | 3x+0.8=7-2x | | 108=-9(x-3) | | 8(8m-3)=424 | | 2-1.5x+1.5=6x-9 | | 3x-8=-x+16 | | 7+3x/4=-x/8 |